Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167799, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37838047

RESUMO

Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.


Assuntos
Citrullus , Fusarium , Solanum lycopersicum , Biofortificação , Doenças das Plantas/prevenção & controle
2.
ACS Meas Sci Au ; 2(4): 351-360, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996538

RESUMO

The fluorescence intensity emitted by nitrogen-vacancy (NV) centers in diamond nanoparticles can be readily modulated by the application of a magnetic field using a small electromagnet. By acquiring interleaved images acquired in the presence and absence of the magnetic field and performing digital subtraction, the fluorescence intensity of the NV nanodiamond can be isolated from scattering and autofluorescence even when these backgrounds are changing monotonically during the experiments. This approach has the potential to enable the robust identification of nanodiamonds in organisms and other complex environments. Yet, the practical application of magnetic modulation imaging to realistic systems requires the use of quantitative analysis methods based on signal-to-noise considerations. Here, we describe the use of magnetic modulation to analyze the uptake of diamond nanoparticles from an aqueous environment into Caenorhabditis elegans, used here as a model system for identification and quantification of nanodiamonds in complex matrices. Based on the observed signal-to-noise ratio of sets of digitally subtracted images, we show that nanodiamonds can be identified on an individual pixel basis with a >99.95% confidence. To determine whether surface functionalization of the nanodiamond significantly impacted uptake, we used this approach to analyze the presence of nanodiamonds in C. elegans that had been exposed to these functionalized nanodiamonds in the water column, with uptake likely occurring by ingestion. In each case, the images show a significant nanoparticle uptake. However, differences in uptake between the three ligands were not outside of the experimental error, indicating that additional factors beyond the surface charge are important factors controlling uptake. Analysis of the number of pixels above the threshold in individual C. elegans organisms revealed distributions that deviate significantly from a Poisson distribution, suggesting that uptake of nanoparticles may not be a statistically independent event. The results presented here demonstrate that magnetic modulation combined with quantitative analysis of the resulting images can be used to robustly characterize nanoparticle uptake into organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...